Опреснитель морской воды: принцип работы. Опреснение морской воды — способы, установки и проблемы Опреснитель воды своими руками


Вода – главный источник жизни на планете, основа всего живого и всех организмов. Без нее человек не может долго прожить, однако, для питья годится далеко не всякая вода. Начнем с того, что она может быть загрязнена, в таком случае, Вы рискуете получить проблемы со здоровьем, поэтому, ее необходимо . А еще может случиться так, что вся вода, которая окажется в Вашем распоряжении, будет соленой, морской. Ну, мало ли, может Вы пережили кораблекрушение и дрейфуете на плоту в море. Или оказались на необитаемом острове. Или же Вы – гордый сын пустыни, в которой миллионы нефти и при этом нет пресной воды. На морской воде человек долго не протянет, так что же делать в такой ситуации? К счастью, человечество, очевидно, не от хорошей жизни, изобрело несколько способов опреснить морскую воду . Вам останется лишь выбрать из них наиболее подходящий.

Химический метод ионного обмена

Это относительно новый способ, который позволял открыть новые перспективы в области опреснения воды. Заключается он в прогоне воды через фильтры, содержащие в себе иониты. Иониты — это особые вещества, имеющие зернистую структуру и представляют собой органические кислоты и основания. Нерастворимы в воде и имеют свойство обменивать свои ионы на ионы, входящие в состав исходной воды. Между собой разделяются по типу обмениваемого иона на те, которые обменивают катионы, сюда относятся Са +2 , Mg +2 , Na+ и прочие, и те, что обменивают анионы, это вещества Cl-, SO -2 4 и прочие. Опресняемая вода при этом может содержать соли до трех грамм на литр.

Ионные фильтры бывают либо напорные, либо безнапорные. Их главное отличие в том, что напорные фильтры устанавливаются на подземные источники воды, не требующие предварительной очистки, а безнапорные – на поверхностные воды. Здесь уже требуется предварительная очистка и обеззараживание.

К ионитам предъявляются определенные требования. Они не должны изменять свойств воды и приводить к появлению вредных для здоровья человека веществ.

Электродиализ

Сводится к помещению воды в электрическое поле. При этом, катионы и анионы воды движутся к предварительно погруженному в нее катоду и аноду. Опресняющая установка оборудована специальными мембранами, проницаемыми для катионов и анионов. Это позволяет скапливать между этими перегородками опресненную воду. Изначально, все это было просто научным экспериментом. Однако, со временем, стоимость электроэнергии значительно снизилась, что сделало возможным применение электродиализа в крупных масштабах. Также, этот способ комбинируется с предыдущим, когда пропускающие мембраны изготавливаются с включением ионитов.

Указанные методы пригодны для промышленного опреснения. Используются в засушливых регионах, где наблюдается острая нехватка пригодной для питья воды. Эти способы требуют специального и весьма дорогостоящего оборудования и поэтому малопригодны в домашних, не говоря уже о походных, условиях. Здесь используются другие способы. Так, в домашних условиях, соленую воду можно дистиллировать и частично замораживать. А в походных – собирать конденсат с помощью открытого источника огня, солнечных лучей и топить снег и лед. Рассмотрим это более подробно.

Опреснение воды в домашних и походных условиях

Для преобразования морской воды в пресную в домашних условиях, используется дистилляция и заморозка . И то и другое приводит к изменению агрегатного состояния воды – либо превращению ее в пар, либо в лед, в результате которого вода избавляется от значительной части содержащихся в ней солей.

Дистилляция воды

Дистилляция заключается в нагреве воды, ее дальнейшему испарению и сбору конденсата в отдельной емкости. Лучше всего для дистилляции подходит самогонный аппарат. Существуют специальные дистиллирующие установки, которые работают при температуре, близкой к 100 градусам, попутно обеззараживая ее. Минусом дистиллируемой воды является то, что она не имеет ни вкуса ни запаха. Пить ее, мягко говоря, неприятно. Благо, некоторые современные установки имеют функцию добавления в такую воду минеральной воды, для придания хоть какого-то вкуса.

Конденсация воды

Если же самогонного аппарата нет под рукой, то можно воспользоваться методом конденсации . Соедините бутылку с водой с пустой бутылкой скотчем и уложите их в самое теплое или солнечное место. При этом, пустую бутылку следует установить чуть выше чем полную. Спустя определенное время будет собираться чистый конденсат, который будет пригоден для питья.

Для опреснения сгодится и широкий таз. В таз заливается вода, а в его середину устанавливается пустая емкость. Поверх всего этого натягивается пакет или пленка и герметично закрепляется. Посередине кладется небольшой груз, и вся эта конструкция размещается в самом теплом или солнечном месте. Спустя некоторое время в емкость будет собираться конденсат.

Замораживание воды

Замораживание соленой воды требует наличия морозильной камеры. Способ этот прост и легок, поскольку понятен и не требует сооружения каких-либо конструкций. Просто налейте в емкость соленую воду и разместите ее в морозилке. Затем, необходимо тщательно следить за ней, чтобы она не замерзла полностью. Пресной водой будет лишь лед на поверхности, и если емкость промерзнет целиком, то соль никуда не денется. Поэтому, следим за процессом и собираем образующийся ледок. Соль будет скапливаться и поэтому не нужно вычерпывать из емкости всю воду. Как только Вы опреснили две трети емкости с соленой водой, вылейте остаток и наберите новую.

Придется импровизировать, потому что вряд ли кто-то додумается взять с собой в поход портативный опреснитель. Но голь на выдумки хитра, поэтому, если Вы оказались в безвыходном положении, то включите свою фантазию – можно соорудить импровизированный дистиллятор из подручных средств, буквально из желудей и шишек и выпаривать воду на открытом огне, либо же воспользоваться способом с тазом, но вместо таза использовать вырытую яму.

Вкус опресненной воды

Да, вот это уже действительно проблема. Вода, которая прошла дистилляцию и перегонку не имеет ни вкуса ни запаха, она просто никакая. Конечно, она чистая и безопасная для здоровья, да, без жидкости человек долго не проживет, однако, употребление безвкусной пресной воды способно отбить волю к жизни даже у самого заядлого выживальщика. Разумеется, если Вы оказались один на необитаемом острове и из веток с палками смогли соорудить себе дистиллятор, а потом еще полдня ждали, пока он осилит перегнать кружку воды, то выбор-то у Вас небольшой: либо пить, что есть, либо искать нормальный , либо садиться и помирать от жажды. Помирать никому не хочется, а источником может и не оказаться, тогда придется пить, что есть. Вашу горькую участь можно слегка скрасить, добавив в жидкость что-то, что способно придать вкус или запах, да хоть ту же соленую воду, в разумных пропорциях.

Европейский инвестиционный банк объявил о подписании финансового контракта на сумму 142 млн. евро на проектирование и строительство завода по опреснению морской воды с использованием технологии обратного осмоса. Технология израильская, давно используемая во всем мире, но в самом Израиле на строительство новых опреснителей не хватало средств.

Опреснительный завод удовлетворит 20% потребностей страны

Контракт, подписанный с компанией Sorek Desalinationбудет способствовать значительному увеличению доступности водных ресурсов в регионе, где воды всегда не хватало. По сообщению издания опреснительный завод должен удовлетворить 20% потребностей страны в пресной воде для домашнего пользования. Предполагается, что производственная мощность нового завода составит 150 миллионов кубических метров воды в год. Глава Минфина Штайниц заявил, что опреснительный завод в Сорек является одним из крупнейших в мире и позволит в значительной мере преодолеть последствия кризиса водного хозяйства страны.

Смешивание разной воды позволит улучшить качество воды

Расширение технологий опреснения будет иметь непосредственное влияние на повседневную жизнь людей: смешивание опресненной воды с пресной питьевой воды из национальной системы водоснабжения позволит улучшить качество воды, поступающей к потребителям за счет снижения ее жесткости и концентрации солей, нитратов и бора. Это, в конечном счете приведет к заметному снижению водозабора и, таким образом, защитит от проникновения соленых вод в водоносные горизонты. В Израиле в 2007 и 2009 годах Европейский инвестиционный банк поддерживал строительство и расширение опреснительного завода в Хадере, выделив кредиты на общую сумму 130 миллионов евро. В Средиземноморском регионе в целом, этот банк вложил в развитие водного сектора более 1,050 млрд. евро.

Мембранные установки водоподготовки для обессоливания морской воды

Обратноосмотические установки водоподготовки предназначены для обессоливания воды с минерализацией до 45 г/л. Солесодержание опресненной воды соответствует требованиям Всемирной организации здравоохранения и не превышает 0,5 мг/л.

Базовый вариант установки водоподготовки включает:

  • узел механической очистки механический фильтр с рейтингом фильтрации 10мкм;
  • узел мембранного обессоливания обеспечивает глубокую очистку и снижение общего солесодержания воды;
  • ультрафиолетовый стерилизатор для предотвращения вторичного биопоражения воды и ее глубокого обеззараживания перед подачей потребителю.

Приведенная схема может применяться при подаче воды из прибрежной скважины, в случае подачи воды из открытого моря установка дополнительно комплектуется узлом предварительной очистки УПО на базе:
а) реагентной обработки;
б) на базе микро- или ультрафильтрации.

Узел предварительной очистки УПО на основе реагентной обработки

Включает реактор-усреднитель и отстойник, в который вмонтирован тонкослойный модуль, существенно повышающий эффективность отстаивания, сетчатый самопромывной фильтр, задерживающий механические частиц размером до 20 мкм, механические фильтры с рейтингом фильтрации 10 мкм.
Узел предварительной очистки УПО на основе микро- или ультрафильтрации
Мембранная фильтрация обеспечивает полное удаление крупно- и мелкодисперсных, взвешенных, коллоидных частиц и др. нерастворимых примесей

Израиль ввел в строй одну из крупнейших в мире опреснительных установок, способную обеспечить почти 20% потребностей страны в питьевой воде, как сообщило местное телевидение.

Завод в приморском городе Хадере будет ежегодно производить способом мембранной очистки 127 миллионов кубометров воды столько же, сколько остальные две израильские установки вместе взятые. В ближайшие годы в стране, страдающей от дефицита традиционных водных ресурсов, планируется построить еще две опреснительные станции.

Это крупнейшая в мире установка опреснения воды мембранным методом. Кроме того, это новое слово в экономии энергии, что позволяет снизить себестоимость воды, говорит заместитель директора компании-оператора Тидар Голан.

Более крупные опреснительные станции есть в Саудовской Аравии, но там применяется технология нагрева морской воды. В Хадере воду пропускают через мембраны, которые задерживают соли и примеси так, что перед отправкой опресненной воды потребителю ее приходится минерализировать.

Технологии опреснения морской воды

Опреснение морской воды на сегодняшний день одна из самых серьезных задач, решение которой позволит избежать многих проблем в будущем. Ввиду глобального и постоянного сокращения запасов пресной воды в мире, задача опреснения морской воды, очистки, водоочистки становится если не самой важной, то, во всяком случае, одной из самых значительных.

Понимая, какое значение для всей нашей планеты имеет возможность получения питьевой воды из морской, компания Агбор Инжиниринг наряду с технологиями водоподготовки и очистки сточных вод также развивает свою деятельность и в сфере опреснения морской воды.

К настоящему времени наиболее распространенными методами опреснения являются:

  • Термическое опреснение очень энергоемкий процесс.
  • Опреснение на полупроницаемых мембранах энергоэффективный процесс.

Особенности

Высокое солесодержание морских вод обуславливает применение морских мембран и специальных материалов. Одной из главных проблем является коррозия оборудования и трубопроводов, поэтому применяются трубопроводы из стеклопластика, полимерных материалов, высококачественные коррозионно-стойкие стали дуплексного или аустенитного типа.

Также из-за высокой минерализации необходимо создавать высокое давление для работы осмоса 50-80 бар. Расход электроэнергии на насосы высокого давления можно сократить, применяя устройства рекуперации энергии.

Наши разработки совпадают с рекомендациями производителей мембранных элементов, касающихся таких технологических параметров, как recovery, удельный поток и т.п. Также мы учитываем материал трубопроводной и запорной арматуры, насосов, приборов. Производственные мощности позволяют выполнять монтаж трубопроводов из высококачественных сталей, таких как 254 SMO и т.п.

Немаловажным является то, что система управления разрабатывается с непосредственным участием технологов, что обеспечивает детальную проработку управления переходными процессами, такими как пуск, останов системы с учетом наличия системы рекуперации энергии.

Опресне́ние воды удаление из воды растворённых в ней солей с целью сделать её пригодной для питья или для выполнения определённых технических задач.
Для питьевого водоснабжения пригодна вода с содержанием растворимых солей не более 1 г/л. Поэтому практической задачей при опреснении воды является уменьшение её избыточной солёности. Достигается это различными способами:
- испарение, в том числе:
обычная дистилляция,
многостадийная флеш-дистилляция,
дистилляция под низким давлением,
термокомпрессионная дистилляция,
- замораживание,
в том числе посредством газовых гидратов,
- ионный обмен,
- электродиализ,
- обратный осмос,
- прямой осмос,
- гидродинамическое разделение.
В стадии исследований:
- электрохимический способ, в котором специальная микросхема разделяет поток солёной воды на два потока с повышенным и пониженным содержанием солей.
Опреснение воды для промышленных и бытовых нужд осуществляется на опреснительных установках. В зависимости от используемого метода, энергозатраты на кубический метр составляют от 0,7 кВт∙ч до 20 кВт∙ч.

Источники: www.vodainfo.com, vladbmt.ru, evroplast.in.ua, www.agbor.ru, ru.cyclopaedia.net

Исчезнувшие колена Израиля. Часть4

Среди эфиопских фалаша распространено убежде­ние, что они происходят от царя Соломона (965-928 годы до нашей эры). К этому...

Как сделать макияж девушкам с веснушками

Если вы хотите показать веснушки, откажитесь от тонального средства. Даже самое легкое их замаскирует. Ограничитесь корректором: наносите его...

Все что нужно знать для грамотной заботы за волосами

Залог здоровых волос - хороший лечебный шампунь. Они бывают универсальными, то есть подходят для любых волос, и существуют...

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Запасы воды на планете Земля огромны, но большая часть доступной пресной воды распределена неравномерно. А морская непригодна для пищевой промышленности из-за солености. По этой же причине ее нельзя использовать для сельского хозяйства и бытовых нужд. В морской воде содержится не только соль, а еще более 40 химических элементов. Для того чтобы получить пригодную к использованию воду требуется опреснение морской воды – процесс, который позволяет получить пресную воду с содержанием солей менее 0,002 г/мл.

Существуют разные методы опреснения воды – от относительно простых и экономичных до масштабных и специализированных. В настоящее время продолжаются поиски дешевого и эффективного способа обессоливания.

Способы опреснения

Основные способы опреснения воды:

  • Дистилляция.
  • Ионизация.
  • Обратный осмос.
  • Электродиализ.

Это методы, которые можно использовать в крупных масштабах, для нужд промышленности. Среди них большой популярность пользуется дистилляция – она бывает простой или многоступенчатой. Во время дистилляции воду доводят до кипения, образуется водяной пар – чистая дистиллированная вода. В остатке же находятся соли.

С помощью дистилляции получают более половины всей опресняемой жидкости. Отдельно выделяют метод мембранной дистилляции, заключающийся в собирании водяного пара по одну сторону от специальной мембраны, которая пропускает только молекулы газа.

Обратный осмос – это один из самых экономичных методов. Подсчеты показывают, что опреснение 15 тонн исходного сырья будет стоить не больше 1 доллара. Суть метода в продавливании жидкости через чрезвычайно мелкие фильтры. Через поры проходит только чистая жидкость, соли и примеси остаются.

Электродиализ – это процесс пропускания жидкости через специальную электродную камеру. В камере находятся пластины, которые, соответственно заряду, притягивают катионы и анионы. Преимущество метода – высокая устойчивость оборудования к воздействию внешней среды. Так, электродиализ дает возможность проводить опреснение воды при высокой температуре. Минусы – необходимость установки специального оборудования.

Другие методы немного сложнее и распространены не так широко. Ограниченное применение связано с высокой себестоимостью опресненной воды.

В некоторых южных регионах используется достаточно простой метод – солнечное опреснение воды. Он заключается в нагревании воды на солнце. Пар улавливается, так получают пресную воду. Есть и обратный метод – опреснение воды замораживанием. Насыщенная солью жидкость замерзает медленнее, чем пресная – в момент замерзания их можно разделить.

Опреснение в промышленности

В промышленных масштабах недостаток чистой опресненной воды ощущается острее и зафиксирован более чем в полусотне стран. Кризис связан в первую очередь с активным развитием промышленности, быстрым ростом населения и несовершенством экологического законодательства. Поэтому вопрос опреснения воды в промышленных масштабах стоит очень остро. Это оптимальный путь добычи пресной воды в крупных масштабах – особенно использование опреснительных установок актуально в прибрежных зонах.

Большинство крупных опреснительных станций расположено в регионах с недостатком питьевой воды. К ним относится практически весь Ближний Восток, а также некоторые страны Северной Африки. Строительство станций продолжается также в Европе и США. Современные технологические мощности позволяют удовлетворить потребность населения в чистой питьевой воде даже в странах с минимальными природными ресурсами.

Что касается обстановки в России, то опреснительные технологии только начинают развиваться. Благодаря природным запасам и особенностям климата и территории, природных запасов хватит минимум на несколько десятков лет.

Новые возможности и альтернативы

Технологии опреснения несовершенны, поэтому продолжается поиск альтернативных возможностей. Наиболее перспективной представляется идея транспортировки льда из антарктического региона. Главная проблема состоит в длительности такой транспортировки и возможных последствиях от вмешательства в структуру ледника.

Еще одна технология – регенерация. Суть состоит в том, что сточные и поверхностные воды очищают и снова пускают в бытовой или промышленный оборот. Такая жидкость пригодна, по крайней мере, для технических и сельскохозяйственных нужд.

Особые опреснители

Существуют специальные судовые опреснители, которые предназначены для получения жидкости во время длительного плавания. Большинство таких опреснителей построено на основе мембранного фильтра. В настоящее время активно растет число судов, оборудованных такими опреснителями.

Еще одна категория – бытовые устройства. Они подходят не только для домашнего использования. Их можно устанавливать, например, в лаборатории, медицинские учреждения, косметические салоны. Бытовые устройства работают по принципу паровых дистилляторов. Они отличаются только объемом чистой жидкости, производимой за определенный промежуток времени. Существенный недостаток в том, что они требуют много электроэнергии.

Наименование параметра Значение
Тема статьи: Опреснение воды.
Рубрика (тематическая категория) Производство

Существует еще ряд методик об­работки воды при которых также про­исходит ее обеззараживание. Но обеззараживание не является един­ственной целью их применения, наряду с обеззараживанием происходит опреснение воды. Это такие ме­тоды как обратноосмотическая филь­трация и дистилляция воды.

Опреснение воды - методы уда­ления из нее растворенных солей и других примесей. Эту группу можно в свою очередь разделить на химичес­кие и физические методы. Рассмотрим их поподробнее.

Химическое осаждение. Этот ме­тод основан на переводе растворен­ных солей в нерастворимые соединœе­ния, которые выпадают в осадок и уда­ляются. Применяемые реактивы меня­ются исходя из солевого соста­ва опресняемой воды. К примеру, из­быток солей магния осаждается содой, а сульфаты бывают удалены обра­боткой гидратом окиси бария. Метод химического осаждения тре­бует использования дорогостоящих ре­активов, каждый из которых направлен на строго определœенную примесь воды, реагенты не подвергаются регенерации. По этой причинœе данный метод имеет очень ограниченное применение.

Ионный обмен. Метод основан на свойстве некоторых веществ обратимо обмениваться ионами с раствора­ми солей. Эти вещества называют ионообменными смолами. Это своего рода твердые электролиты, которые делятся на катиониты и аниониты.

Катиониты - вещества типа твер­дых кислот, у которых анионы пред­ставлены в виде нерастворимых в воде полимеров. Аниониты - по своей сути твердые основания, нерастворимую структуру которых образуют катионы. Их анио­ны (обычно это гидроксильная группа) подвижны и могут обмениваться с ани­онами растворов.

Химический механизм работы ионо­обменных смол состоит в последо­вательном прохождении воды через катионит и анионит. В итоге из воды уда­ляются катионы и анионы и она тем са­мым обессоливается. Обменная способ­ность ионообменных смол (ионитов) не бесконечна, постепенно она снижается, и, в конце концов, исчерпывается вов­се. В этом случае требуется регенера­ция раствором кислоты (катионит) или щелочи (анионит), что полностью вос­станавливает исходные химические свойства смол. Эта ценная особенность позволяет использовать их в течение длительного времени. Сложная процедура использова­ния ионообменных смол и их после­дующей регенерации требует автома­тизации, сложной системы управления и крайне важно е оборудование являет­ся довольно громоздким, что ограни­чивает его применение в быту. В на­стоящее время данный метод часто включается как один из элементов про­цесса водоподготовки в частных домах с автономной системой водоснабже­ния.

Электроосмос. Опреснение на принципе электроосмоса производит­ся в специальных аппаратах, пред­ставляющих собой электролитическую ванну, разделœенную двумя полупрони­цаемыми мембранами на три отделœе­ния. Исходная вода подается в сред­нюю камеру. Ионы находящихся в воде солей устремляются сквозь мембраны к электроду, имеющему противополож­ный заряд. Чистая вода остается в средней камере. Данный метод требует затрат элект­роэнергии, хотя и является достаточно эффективным. Эффективность составля­ет более 90%, достигая в некоторых слу­чаях 96%. Мембраны имеют ограничен­ный срок службы, который максимально составляет 5 лет, а при неблагоприятных условиях эксплуатации - значительно меньше. Вместе с тем, данный метод, как и боль­шинство других методов использующих полупроницаемые мембраны, требует предварительной подготовки очищаемой воды. Есть и еще одна особенность, кото­рая значительно ограничивает примене­ние данного метода. Это то, что всœе веще­ства, которые не превратились при раство­рении в ионы, не реагируют на электри­ческое поле. Т.е. большинство органичес­ких веществ, бактерий, вирусов и т.п. ос­танется в растворе.

Опреснение вымораживанием. Этот метод основан на том, что образова­ние кристаллов льда при снижении тем­пературы ниже 0 градусов происходит только из молекул воды (явление криос­копии). Вследствие этого пресная вода выделяется в виде льда из раствора. Ра­створ становится всœе более и более кон­центрированным. В случае если затем слить обра­зовавшийся рассол и растопить лед, то получится обессоленная вода.

Этот метод является крайне трудоем­ким, тем более что автоматизировать его очень сложно. Степень очистки таким ме­тодом сложно спрогнозировать и возмож­но потребуется несколько циклов замора­живания-размораживания, чтобы полу­чить действительно обессоленную воду. Вместе с тем, нельзя гарантировать полной дезинфекции этой воды. Есть и еще одна особенность, связанная с данным мето­дом. Это накопление концентрации так называемой тяжелой воды, химически такой же, как и обычная, но имеющей в своем составе более тяжелый изотоп во­дорода, который является радиоактив­ным. Тяжелая вода замерзает первой и сразу включается в состав образующего­ся льда. Избежать этого можно только если убирать первую корочку льда, образующу­юся в самом начале вымораживания. Это еще больше усложняет и без того не про­стую методику.

Опреснение фильтрацией. В про­цессе фильтрации используется множе­ство различных фильтрующих устройств исходя из цели применения. Наи­более часто используемые фильтры:

Фильтры-корректоры рН. Это филь­тры способные изменять кислотно-щелоч­ное равновесие (рН) проходящей сквозь них жидкости. Необходимость в измене­нии рН воды возникает в двух случаях: 1. Для борьбы с коррозией, т.к. вода с высо­ким и низким рН обладает высокими кор­розийными свойствами; 2. Для обеспечения оптимального ре­жима эксплуатации систем очистки воды, так как для нормальной работы некоторых видов фильтрующих сред требуется опре­делœенное значение рН.

Фильтры-обезжелœезиватели. Эти фильтры предназначены для удаления желœеза и марганца из воды. В качестве реактива в большинстве таких фильтров используется двуокись марганца, который служит катализатором реакции окисления, при которой растворенные желœезо и мар­ганец переходят в нерастворимую форму и выпадают в осадок. Этот осадок задер­живается фильтрующей средой и в даль­нейшем вымывается в дренаж при обрат­ной промывке.

Фильтры-умягчители. Οʜᴎ предназ­начены для снижения жесткости воды. Благодаря применению специальных за­сыпок фильтры этого типа могут обладать комплексным действием и способны уда­лять из воды определœенные количества желœеза, марганца, нитратов, нитритов, сульфатов, солей тяжелых металлов.

Угольные фильтры. Активирован­ный уголь уже достаточно давно приме­няется в водоочистке для улучшения не­которых показателœей воды. В частности, такими фильтрами удаляется многие не­приятные привкусы и запахи, некоторые органические примеси и т.п. Сейчас вмес­то активированного угля стали использо­вать уголь скорлупы кокосовых орехов, адсорбционная способность которого в 4 раза выше. Уже разработаны и другие сорбенты.

Угольные фильтры достаточно деше­вы и в связи с этим приобрели довольно боль­шое распространение. При этом их приме­нение имеет ряд больших недостатков:

1. Маленькая пропускная способ­ность. Это связано с тем, что качество фильтрации сильно зависит от скорости прохождения воды через него. Чем ниже скорость, тем лучше фильтрация, и наобо­рот, при увеличении скорости не только снижается качество фильтрации, но и может произойти сброс адсорбированных ранее примесей. В результате неправиль­ной эксплуатации вода может даже ухуд­шить свой состав в результате этого сбро­са.

2. Биообрастание. При фильтрации происходит накопление большого количе­ства органических веществ, которые яв­ляются питательной средой для многих микроорганизмов. В результате, через неĸᴏᴛᴏᴩᴏᴇ время использования можно получить более опасную в бактериологичес­ком отношении воду, чем исходная водо­проводная. На некоторые современные фильтры наносятся специальные антисеп­тические присадки, задачей которых яв­ляется предотвращение роста бактерий. Но это "палка о двух концах". Безопасность этих присадок для здоровья тоже являет­ся большим вопросом. К примеру, серебрение угля повышает содержание в воде серебра, ĸᴏᴛᴏᴩᴏᴇ является тяжелым ме­таллом. Залповые выбросы загрязнений. Это сбросы уже накопленных загрязнений органической и неорганической природы, а также микроорганизмов, обильно разви­вающихся внутри фильтра, которые про­исходят при изменении скорости тока жид­кости, или по другим причинам. В резуль­тате потребитель может получить водудалеко не того качества, ĸᴏᴛᴏᴩᴏᴇ ожида­лось.

Исходя из этих особенностей, в совре­менных системах очистки воды угольные фильтры используются исключительно для предварительной подготовки воды, которая затем подвергается более каче­ственной очистке. Примером такой систе­мы являются обратноосмотические систе­мы, основной рабочей частью которых является специальная мембрана, но для того чтобы увеличить срок ее службы ис­пользуются несколько угольных фильтров предварительной фильтрации.

Фильтры механической очистки. Предназначены для удаления грубых ча­стиц размером больше 1 микрона. Это бывают частицы песка, взвеси, ржав­чина, коллоидные вещества. Некоторые бактерии (размером 1-2 микрона) также могут отфильтровываться таким фильт­ром. Такие фильтры используются обыч­но в качестве префильтров грубой фильт­рации в более сложных системах водоподготовки. Их недостатком является сравни­тельно низкая грязеемкость, в связи с этим при сильном загрязнении воды или больший производительности системы они требу­ют частой промывки.

Фильтры микрофильтрации. Это фильтры с порами от 0,03 до 2 микрон. В эту категорию входят мембранные филь­тры, способные удалить большинство бак­терий, волокна асбеста͵ некоторые виру­сы и сажу. Это также довольно грубая фильтрация, но приборы, использующие ее, довольно дешевы и в связи с этим пользу­ются популярностью.

Фильтры ультрафильтрации. Бо­лее тонкие и высокотехнологичные филь­тры. Οʜᴎ способны отфильтровывать ча­стицы размером от 0,003 до 0,1 микрона, ᴛ.ᴇ. способны отфильтровать даже мелкие вирусные частицы и некоторые бактери­альные токсины.

Фильтры нанофильтрации. Позво­ляют осуществлять довольно качествен­ную фильтрацию частиц размером от 0,0006 до 0,009 микрон, а это уже герби­циды, пестициды, токсины, синтетические фаски. Это более высокотехнологичные мембраны, способные освободить воду от большинства опасных примесей. Но даже этим мембранам не под силу освободить воду от ионов тяжелых металлов и раз­личных солей.

Фильтры обратноосмотической фильтрации. Это самые качественные фильтрующие мембраны, способны осво­бодить воду от 99% примесей. Диаметр пор составляет около 0,0001 микрона. Та­кие размеры сложно даже представить. Такими мембранами фильтруются даже ионы металлов, не говоря уже об осталь­ных возможных примесях.

Обратноосмотическая фильтрация - это метод фильтрации, основанный на явлении так называемого обратного ос­моса. Прежде чем объяснять, что это такое, стоит определиться, что же такое обычный осмос. Иллюстрацией осмоса может служить простой пример с полу­проницаемой мембраной, ᴛ.ᴇ. такой мембраной, через которую проходят молекулы воды и практически не про­никают остальные вещества. В случае если по­местить такую мембрану в качестве раз­делителя двух частей сосуда, с одной стороны которого налит раствор пова­ренной соли, а с другой дистиллированная вода, то скоро будет наблюдаться перенос воды в ту часть, где находится рассол и его концентрация станет сни­жаться. Уровень жидкости в этой части сосуда начнет подниматься, а во второй - опускаться. В случае если вода и рассол изна­чально находятся под одинаковым дав­лением, перенос, снижая различие в концентрациях, всœегда происходит из растворителя (более разбавленного ра­створа) в более концентрированный раствор (рассол). Это природное явле­ние переноса растворителя в рассол получило название осмос, а процесс принято называть осмотическим. При этом увеличение давления со стороны рассола приводит к уменьше­нию осмоса, и в определœенной точке процесс полностью прекращается. Дав­ление, при котором происходит эта ос­тановка принято называть осмотическим.

Пожалуй, стоит сказать, что явле­ние осмоса лежит в базе обмена ве­ществ всœех живых организмов. Благода­ря ему в каждую живую клетку поступа­ют питательные вещества и, напротив - выводятся продукты жизнедеятельнос­ти. Этот природный процесс играет зна­чительную роль в растительных и жи­вотных организмах.

Итак, вернемся к нашему экспери­менту. При дальнейшем увеличении давления на рассол можно поменять направление процесса. В этом случае через мембрану преимущественно бу­дет транспортироваться растворитель, ᴛ.ᴇ. вода. И именно это явление послу­жило основой обратноосмотического метода опреснения воды.

Механизм работы полупроницае­мых мембран. Для объяснения механиз­ма работы обратноосмотических мембран было выдвинуто несколько гипотез. Со­гласно так называемой гипотезе гипер­фильтрации в мембране существуют поры, пропускающие молекулы воды, и при этом ничтожно малые, чтобы пропус­кать через себя ионы растворенных в воде солей. Предложенная модель позволила объяснить многие закономерности в ра­боте обратноосмотических систем. Позже была предложена модель сорбционного механизма избиратель­ной проницаемости, согласно которой на поверхности мембраны, ᴛ.ᴇ. на повер­хности раздела сред, образуется слой связанной воды, обладающей понижен­ной растворяющей способностью. Такой же слой образуется и внутри поры. При фильтрации происходит вытеснение этой воды, при котором вытесненные молекулы заменяются только молекула­ми воды. И так слой за слоем. Согласно другой теории, в структу­ре мембраны вода может находиться в связанном и капиллярном состояниях. Под действием давления через такую мембрану переносится преимуществен­но пресная вода, непрерывно образуя и разрывая водородные связи.

Особенности метода обратно-осмотической очистки воды. В сис­темах обратного осмоса давление вход­ной воды на мембрану соответствует давлению воды в трубопроводе. Важно, что чем выше давление на входе, тем лучше происходит процесс очистки. Это не только увеличивает производитель­ность мембраны, но и улучшает каче­ство очистки. И наоборот, в случае если давле­ние в водопроводной системе низкое, мембрана работать не будет. По этой причине некоторые модели обратноосмотичес­ких систем комплектуются специальным насосом для повышения входного дав­ления. Такие системы стоят несколько дороже, но только они способны рабо­тать при давлениях ниже 4,2 атмосфе­ры (именно такое давление считается пороговым для обратноосмотических мембран). В процессе очистки концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвраще­ния этого вдоль мембраны создается принудительный поток воды, смываю­щий "рассол" в дренаж. Неорганические вещества очень хорошо отделяются обратноосмотичес-кой мембраной. Степень очистки по большинству неорганических элементов составляет от 85 до 98% исходя из типа применяемой мембраны. Обратноосмотическая мембрана так­же удаляет из воды и органические веще­ства. Органика с молекулярной массой более 300 удаляется полностью, а с мень­шей - может проникать через мембрану в незначительных количествах. Большой размер вирусов и бакте­рий практически полностью исключает вероятность их проникновения через мембрану. В то же время мембрана про­пускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она не требует дополнительного кипячения. Вода, прошедшая обработку на обратноосмотической установке, может ус­пешно применяться для решения следу­ющих домашних задач: питьевых нужд, приготовления пищи и напитков, полива растений, аквариумов, систем централь­ного отопления и даже приготовления электролита аккумуляторных батарей.

Хочется также сказать что мы час­то пьем воду, очищенную обратноосмо-тическим методом, даже и не подозре­вая об этом. Это происходит потому, что данный метод используется не только в бытовых, но и в промышленных систе­мах. Так производится качественная вода для ликеро-водочной, молочной промышленности, производства безал­когольных напитков и продуктов пита­ния. В общем - везде, где требуется вода высокого качества. Некоторые компании даже наладили продажу этой чистой воды в бутылированном виде. И в этой ситуации именно бытовые обратноосмотические системы позволя­ют не покупать бутыли, а делать такую же воду самостоятельно.

Существует и очень важный эконо­мический аспект, который тоже стоит принимать во внимание: В среднем человек потребляет в пищу за сутки около 3 литров воды. В случае если вода также используется для приготовления пищи, то нужно исходить из потребностей в 5 литров на каждого члена семьи. В случае если покупать питьевую воду в бутылирован­ном виде, то одна бутыль (5 литров) стоит примерно 1 доллар США. То есть 365 дол­ларов на члена семьи в год. В то же время обратноосмотическая система стоит от 350 долларов США. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ее ис­пользование окупается уже за первый год эксплуатации. В случае если семья состоит из трех человек, то окупаемость составит всœего 4 месяца. Задумайтесь над этим, прежде чем идти в магазин за очередным бутылем воды.

Опреснение воды. - понятие и виды. Классификация и особенности категории "Опреснение воды." 2017, 2018.

Пресная вода – незаменимая часть нашего рациона, необходимая для выживания. Стремительный рост населения вызвал ее дефицит на планете. Исчерпание запасов питьевой воды заставило человечество искать способы ее самостоятельного изготовления. В качестве источника для опреснения используется мировой океан. Его воды очищают от излишка солей с помощью специальных установок, таких, как опреснитель морской воды.

Существуют различные методы, как опреснить воду в промышленных масштабах. Многие из них связаны с использованием больших энергоемких установок – дистилляторов и специальных фильтров. К основным методам опреснения в промышленности относятся следующие.

Применение химических реагентов

Для опреснения используют специальные вещества, которые реагируют с солями морской воды, образуя нерастворимые химические соединения. После окончания реакции нужно всего лишь убрать полученный осадок методом фильтрации.

В промышленности этот метод используют крайне редко, а в быту – никогда. К основным недостаткам такого способа очистки относятся:

  • большое количество реагентов;
  • значительная длительность процесса;
  • дороговизна.

Метод обратного осмоса

Этот хорошо зарекомендовавший себя способ получения питьевой воды применяется в промышленности давно. Он состоит в использовании очистительных мембран, которые изготавливают из полупроницаемого материала – полиамида или целлюлозы. Воду с высоким содержанием солей пропускают под давлением через мембраны, в результате чего молекулы H2O проходят через поры, а крупные ионы примесей задерживаются. Данный способ позволяет получить достаточно большое количество очищенной воды.

Опресняем воду самостоятельно

Многие люди проживают в засушливых районах, где дефицит пресной воды является серьезной проблемой. В некоторые населенные пункты питьевая вода не доставляется, поэтому местным жителям приходится добывать ее самостоятельно. Они накопили большой опыт,как опреснить морскую воду в домашних условиях.

Дистилляция воды

Вот как сделать опреснитель морской воды своими руками. Его действие основано на таком физическом процессе, как конденсация. Можно просто кипятить морскую воду в кастрюле, накрытой крышкой. Пар скапливается под крышкой и превращается в чистый конденсат. Однако при этом теряется большая часть пресной воды, так как она стекает назад в емкость.

Для решения проблемы можно усовершенствовать данный метод:

  1. Просверлите в крышке для кастрюли отверстие.
  2. Проденьте в него гибкую трубку и накройте кастрюлю крышкой.
  3. Второй конец трубки поместите в другой сосуд.
  4. Трубку накройте мокрым полотенцем, чтобы водяной пар остужался.
  5. Поставьте кастрюлю на огонь и дождитесь, когда вся вода сконденсируется в другом сосуде.

В кастрюле останется соль и остальные примеси, а в другом сосуде – чистая вода.

Но важно учесть, что полученная вода будет дистиллированной и не полезной для организма. Поэтому перед употреблением рекомендуется немного разбавить ее соленой водой.

К преимуществам метода относится его простота и возможность использования в быту, к недостаткам – небольшое количество полученной жидкости.

Метод замораживания

Поучиться,как из морской воды сделать пресную, можно и у жителей холодных районов земного шара. Речь идет об эскимосах, которые пользуются большими запасами пресной воды из ледников. Также они специально выставляют на мороз соленую воду и ждут образования кристаллов льда. Этот лед представляет собой замершие молекулы воды. Его растапливают и используют для питья и приготовления пищи.

Вода с примесями остается в жидком состоянии, поэтому от нее легко избавиться, просто вылив.

Использование специальных установок

В продаже появились специальные опреснительные установки для очистки морской воды. Наиболее популярный из них – солнечный опреснитель. Он обеспечивает испарение молекул H2O с помощью энергии солнца.

На дно помещается соленая вода. Пар конденсируется на стенках конуса, стекает и накапливается в приемнике внизу. Герметичная структура установки создает эффект парника и не позволяет пару выходить наружу, что повышает эффективность метода. Чтобы извлечь чистую воду, нужно, когда все выпарится, открутить пробку и слить жидкость в емкость.