Как составить химическое уравнение: правила, примеры. Запись химической реакции


Химия – это наука о веществах, их свойствах и превращениях .
То есть, если с окружающими нас веществами ничего не происходит, то это не относится к химии. Но что значит, «ничего не происходит»? Если в поле нас вдруг застала гроза, и мы все промокли, как говорится «до нитки», то это ли не превращение: ведь одежда была сухой, а стала мокрой.

Если, к примеру взять железный гвоздь, обработать его напильником, а затем собрать железные опилки (Fe ) , то это ли так же не превращение: был гвоздь – стал порошок. Но если после этого собрать прибор и провести получение кислорода (О 2) : нагреть перманганат калия (КМпО 4) и собрать в пробирку кислород, а затем в неё поместить раскалённые «до красна» эти железные опилки, то они вспыхнут ярким пламенем и после сгорания превратятся в порошок бурого цвета. И это так же превращение. Так где же химия? Несмотря на то, что в этих примерах меняется форма (железный гвоздь) и состояние одежды (сухая, мокрая) – это не превращения. Дело в том, что сам по себе гвоздь как был веществом (железо), так им и остался, несмотря на другую свою форму, а воду от дождя как впитала наша одежда, так потом его и испарила в атмосферу. Сама вода не изменилась. Так что же такое превращения с точки зрения химии?

Превращениями с точки зрения химии называются такие явления, которые сопровождаются изменением состава вещества. Возьмём в качестве примера тот же гвоздь. Не важно, какую форму он принял после обработки напильником, но после того как собранные от него железные опилки поместили в атмосферу кислорода - он превратился в оксид железа (Fe 2 O 3 ) . Значит, что-то всё-таки изменилось? Да, изменилось. Было вещество гвоздь, но под воздействием кислорода сформировалось новое вещество – оксид элемента железа. Молекулярное уравнение этого превращения можно отобразить следующими химическими символами:

4Fe + 3O 2 = 2Fe 2 O 3 (1)

Для непосвящённого в химии человека сразу возникают вопросы. Что такое «молекулярное уравнение», что такое Fe? Почему поставлены цифры «4», «3», «2»? Что такое маленькие цифры «2» и «3» в формуле Fe 2 O 3 ? Это значит, наступило время во всём разобраться по порядку.

Знаки химических элементов.

Несмотря на то, что химию начинают изучать в 8-м классе, а некоторые даже раньше, многим известен великий русский химик Д. И. Менделеев. И конечно же, его знаменитая «Периодическая система химических элементов». Иначе, проще, её называют «Таблица Менделеева».

В этой таблице, в соответствующем порядке, располагаются элементы. К настоящему времени их известно около 120. Названия многих элементов нам были известны ещё давно. Это: железо, алюминий, кислород, углерод, золото, кремний. Раньше мы не задумываясь применяли эти слова, отождествляя их с предметами: железный болт, алюминиевая проволока, кислород в атмосфере, золотое кольцо и т.д. и т.д. Но на самом деле все эти вещества (болт, проволока, кольцо) состоят из соответствующих им элементов. Весь парадокс состоит в том, что элемент нельзя потрогать, взять в руки. Как же так? В таблице Менделеева они есть, а взять их нельзя! Да, именно так. Химический элемент – это абстрактное (то есть отвлечённое) понятие, и используется в химии, впрочем как и в других науках, для расчётов, составления уравнений, при решении задач. Каждый элемент отличается от другого тем, что для него характерна своя электронная конфигурация атома. Количество протонов в ядре атома равно количеству электронов в его орбиталях. К примеру, водород – элемент №1. Его атом состоит из 1-го протона и 1-го электрона. Гелий – элемент №2. Его атом состоит из 2-х протонов и 2-х электронов. Литий – элемент №3. Его атом состоит из 3-х протонов и 3-х электронов. Дармштадтий – элемент №110. Его атом состоит из 110-и протонов и 110-и электронов.

Каждый элемент обозначается определённым символом, латинскими буквами, и имеет определённое прочтение в переводе с латинского. Например, водород имеет символ «Н» , читается как «гидрогениум» или «аш». Кремний имеет символ «Si» читается как «силициум». Ртуть имеет символ «Нg» и читается как «гидраргирум». И так далее. Все эти обозначения можно найти в любом учебнике химии за 8-й класс. Для нас сейчас главное уяснить то, что при составлении химических уравнений, необходимо оперировать указанными символами элементов.

Простые и сложные вещества.

Обозначая единичными символами химических элементов различные вещества (Hg ртуть , Fe железо , Cu медь , Zn цинк , Al алюминий ) мы по сути обозначаем простые вещества, то есть вещества, состоящие из атомов одного вида (содержащие одно и то же количество протонов и нейтронов в атоме). Например, если во взаимодействие вступают вещества железо и сера, то уравнение примет следующую форму записи:

Fe + S = FeS (2)

К простым веществам относятся металлы (Ва, К, Na, Mg, Ag), а так же неметаллы (S, P, Si, Cl 2 , N 2 , O 2 , H 2). Причём следует обратить
особое внимание на то, что все металлы обозначаются единичными символами: К, Ва, Са, Аl, V, Mg и т.д., а неметаллы – либо простыми символами: C,S,P или могут иметь различные индексы, которые указывают на их молекулярное строение: H 2 , Сl 2 , О 2 , J 2 , P 4 , S 8 . В дальнейшем это будет иметь очень большое значение при составлении уравнений. Совсем не трудно догадаться, что сложными веществами являются вещества, образованные из атомов разного вида, например,

1). Оксиды:
оксид алюминия Al 2 O 3 ,

оксид натрия Na 2 O,
оксид меди CuO,
оксид цинка ZnO,
оксид титана Ti 2 O 3 ,
угарный газ или оксид углерода (+2) CO,
оксид серы (+6) SO 3

2). Основания:
гидроксид железа (+3) Fe(OH) 3 ,
гидроксид меди Cu(OH) 2 ,
гидроксид калия или щёлочь калия КOH,
гидроксид натрия NaOH.

3). Кислоты:
соляная кислота HCl,
сернистая кислота H 2 SO 3 ,
азотная кислота HNO 3

4). Соли:
тиосульфат натрия Na 2 S 2 O 3 ,
сульфат натрия или глауберова соль Na 2 SO 4 ,
карбонат кальция или известняк СаCO 3,
хлорид меди CuCl 2

5). Органические вещества:
ацетат натрия СН 3 СООNa,
метан СН 4 ,
ацетилен С 2 Н 2 ,
глюкоза С 6 Н 12 О 6

Наконец, после того как мы выяснили структуру различных веществ, можно приступать к составлению химических уравнений.

Химическое уравнение.

Само слово «уравнение» производное от слова «уравнять», т.е. разделить нечто на равные части. В математике уравнения составляют чуть ли не самую сущность этой науки. К примеру, можно привести такое простое уравнение, в котором левая и правая части будут равны «2»:

40: (9 + 11) = (50 х 2) : (80 – 30);

И в химических уравнениях тот же принцип: левая и правая части уравнения должны соответствовать одинаковым количествам атомов, участвующим в них элементов. Или, если приводится ионное уравнение, то в нём число частиц так же должно соответствовать этому требованию. Химическим уравнением называется условная запись химической реакции с помощью химических формул и математических знаков. Химическое уравнение по своей сути отражает ту или иную химическую реакцию, то есть процесс взаимодействия веществ, в процессе которых возникают новые вещества. Например, необходимо написать молекулярное уравнение реакции, в которой принимают участие хлорид бария ВаСl 2 и серная кислота H 2 SO 4. В результате этой реакции образуется нерастворимый осадок – сульфат бария ВаSO 4 и соляная кислота НСl:

ВаСl 2 + H 2 SO 4 = BaSO 4 + 2НСl (3)

Прежде всего необходимо уяснить, что большая цифра «2», стоящая перед веществом НСlназывается коэффициентом, а малые цифры «2», «4» под формулами ВаСl 2 , H 2 SO 4 ,BaSO 4 называются индексами. И коэффициенты и индексы в химических уравнениях выполняют роль множителей, а не слагаемых. Что бы правильно записать химическое уравнение, необходимо расставить коэффициенты в уравнении реакции . Теперь приступим к подсчёту атомов элементов в левой и правой частях уравнения. В левой части уравнения: в веществе ВаСl 2 содержатся 1 атом бария (Ва), 2 атома хлора (Сl). В веществе H 2 SO 4: 2 атома водорода (Н), 1 атом серы (S) и 4 атома кислорода (О) . В правой части уравнения: в веществе BaSO 4 1 атом бария (Ва) 1 атом серы (S) и 4 атома кислорода (О), в веществе НСl: 1 атом водорода (Н) и 1 атом хлора (Сl). Откуда следует, что в правой части уравнения количество атомов водорода и хлора вдвое меньше, чем в левой части. Следовательно, перед формулой НСl в правой части уравнения необходимо поставить коэффициент «2». Если теперь сложить количества атомов элементов, участвующих в данной реакции, и слева и справа, то получим следующий баланс:

В обеих частях уравнения количества атомов элементов, участвующих в реакции, равны, следовательно оно составлено правильно.

Химические уравнение и химические реакции

Как мы уже выяснили, химические уравнения являются отражением химических реакций. Химическими реакциями называются такие явления, в процессе которых происходит превращение одних веществ в другие. Среди их многообразия можно выделить два основных типа:

1). Реакции соединения
2). Реакции разложения.

В подавляющем своём большинстве химические реакции принадлежат к реакциям присоединения, поскольку с отдельно взятым веществом редко могут происходить изменения в его составе, если оно не подвергается воздействиям извне (растворению, нагреванию, действию света). Ничто так не характеризует химическое явление, или реакцию, как изменения, происходящие при взаимодействии двух и более веществ. Такие явления могут осуществляться самопроизвольно и сопровождаться повышением или понижением температуры, световыми эффектами, изменением цвета, образованием осадка, выделением газообразных продуктов, шумом.

Для наглядности приведём несколько уравнений, отражающих процессы реакций соединения, в процессе которых получаются хлорид натрия (NaCl), хлорид цинка (ZnCl 2), осадок хлорида серебра (AgCl), хлорид алюминия (AlCl 3)

Cl 2 + 2Nа = 2NaCl (4)

СuCl 2 + Zn= ZnCl 2 + Сu (5)

AgNO 3 + КCl = AgCl + 2KNO 3 (6)

3HCl + Al(OH) 3 = AlCl 3 + 3Н 2 О (7)

Cреди реакций соединения следует особым образом отметить следующие: замещения (5), обмена (6), и как частный случай реакции обмена – реакцию нейтрализации (7).

К реакциям замещения относятся такие, при осуществлении которой атомы простого вещества замещают атомы одного из элементов в сложном веществе. В примере (5) атомы цинка замещают из раствора СuCl 2 атомы меди, при этом цинк переходит в растворимую соль ZnCl 2 , а медь выделяется из раствора в металлическом состоянии.

К реакциям обмена относятся такие реакции, при которых два сложных вещества обмениваются своими составными частями. В случае реакции (6) растворимые соли AgNO 3 и КCl при сливании обоих растворов образуют нерастворимый осадок соли AgCl. При этом они обмениваются своими составными частями – катионами и анионами. Катионы калия К + присоединяются к анионам NO 3 , а катионы серебра Ag + – к анионам Cl - .

К особому, частному случаю, реакций обмена относится реакция нейтрализации. К реакциям нейтрализации относятся такие реакции, в процессе которых кислоты реагируют с основаниями, в результате образуется соль и вода. В примере (7) соляная кислота HCl , реагируя с основанием Al(OH) 3 образует соль AlCl 3 и воду. При этом катионы алюминия Al 3+ от основания обмениваются с анионами Сl - от кислоты. В итоге происходит нейтрализация соляной кислоты.

К реакциям разложения относятся такие, при котором из одного сложного образуются два и более новых простых или сложных веществ, но более простого состава. В качестве реакций можно привести такие, в процессе которых разлагаются 1). Нитрат калия (КNO 3) с образованием нитрита калия (КNO 2) и кислорода (O 2); 2). Перманганат калия (KMnO 4): образуются манганат калия (К 2 МnO 4), оксид марганца (MnO 2) и кислород (O 2); 3). Карбонат кальция или мрамор ; в процессе образуются углекислый газ (CO 2) и оксид кальция (СаО)

2КNO 3 = 2КNO 2 + O 2 (8)
2KMnO 4 = К 2 МnO 4 + MnO 2 + O 2 (9)
СаCO 3 = CaO + CO 2 (10)

В реакции (8) из сложного вещества образуется одно сложное и одно простое. В реакции (9) – два сложных и одно простое. В реакции (10) – два сложных вещества, но более простых по составу

Разложению подвергаются все классы сложных веществ:

1). Оксиды: оксид серебра 2Ag 2 O = 4Ag + O 2 (11)

2). Гидроксиды: гидроксид железа 2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O (12)

3). Кислоты: серная кислота H 2 SO 4 = SO 3 + H 2 O (13)

4). Соли: карбонат кальция СаCO 3 = СаO + CO 2 (14)

5). Органические вещества: спиртовое брожение глюкозы

С 6 Н 12 О 6 = 2С 2 Н 5 ОH + 2CO 2 (15)

Согласно другой классификации, все химические реакции можно разделить на два типа: реакции, идущие с выделением теплоты, их называют экзотермические, и реакции, идущие с поглощением теплоты – эндотермические. Критерием таких процессов является тепловой эффект реакции. Как правило, к экзотермическим реакциям относятся реакции окисления, т.е. взаимодействия с кислородом, например сгорание метана :

СН 4 + 2O 2 = СО 2 + 2Н 2 О + Q (16)

а к эндотермическим реакциям – реакции разложения, уже приводимые выше (11) – (15). Знак Q в конце уравнения указывает на то, выделяется ли теплота в процессе реакции (+Q) или поглощается (-Q):

СаCO 3 = СаO+CO 2 - Q (17)

Можно так же рассматривать все химические реакции по типу изменения степени окисления, участвующих в их превращениях элементов. К примеру, в реакции (17) участвующие в ней элементы не меняют свои степени окисления:

Са +2 C +4 O 3 -2 = Са +2 O -2 +C +4 O 2 -2 (18)

А в реакции (16) элементы меняют свои степени окисления:

2Mg 0 + O 2 0 = 2Mg +2 O -2

Реакции такого типа относятся к окислительно-восстановительным . Они будут рассматриваться отдельно. Для составления уравнений по реакциям такого типа необходимо использовать метод полуреакций и применять уравнение электронного баланса.

После приведения различных типов химических реакций, можно приступать к принципу составлений химических уравнений, иначе, подбору коэффициентов в левой и правой их частях.

Механизмы составления химических уравнений.

К какому бы типу ни относилась та или иная химическая реакция, её запись (химическое уравнение) должна соответствовать условию равенства количества атомов до реакции и после реакции.

Существуют такие уравнения (17), которые не требуют уравнивания, т.е. расстановки коэффициентов. Но в большинстве случаях, как в примерах (3), (7), (15), необходимо предпринимать действия, направленные на уравнивание левой и правой частей уравнения. Какими же принципами необходимо руководствоваться в таких случаях? Существует ли какая ни будь система в подборе коэффициентов? Существует, и не одна. К таковым системам относятся:

1). Подбор коэффициентов по заданным формулам.

2). Составление по валентностям реагирующих веществ.

3). Составление по степеням окисления реагирующих веществ.

В первом случае полагается, что нам известны формулы реагирующих веществ как до реакции, так и после. К примеру, дано следующее уравнение:

N 2 + О 2 →N 2 О 3 (19)

Принято считать, что пока не установлено равенство между атомами элементов до реакции и после, знак равенства (=) в уравнении не ставится, а заменяется стрелкой (→). Теперь приступим к собственно уравниванию. В левой части уравнения имеются 2 атома азота (N 2) и два атома кислорода (О 2), а в правой – два атома азота (N 2) и три атома кислорода (О 3). По количеству атомов азота его уравнивать не надо, но по кислороду необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало три атома. Составим следующую схему:

до реакции после реакции
О 2 О 3

Определим наименьшее кратное между данными количествами атомов, это будет «6».

О 2 О 3
\ 6 /

Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение:

N 2 + 3О 2 →N 2 О 3

Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

N 2 + 3О 2 → 2N 2 О 3

Количества атомов кислорода и в левой и в правой частях уравнения стали равны, соответственно по 6 атомов:

Но количество атомов азота в обеих частях уравнения не будут соответствовать друг другу:

В левой – два атома, в правой – четыре атома. Следовательно, что бы добиться равенства, необходимо удвоить количество азота в левой части уравнения, поставив коэффициент «2»:

Таким образом, равенство по азоту соблюдено и в целом, уравнение примет вид:

2N 2 + 3О 2 → 2N 2 О 3

Теперь в уравнении можно вместо стрелки поставит знак равенства:

2N 2 + 3О 2 = 2N 2 О 3 (20)

Приведём другой пример. Дано следующее уравнение реакции:

Р + Cl 2 → РCl 5

В левой части уравнения имеется 1 атом фосфора (Р) и два атома хлора (Cl 2), а в правой – один атом фосфора (Р) и пять атомов кислорода (Cl 5). По количеству атомов фосфора его уравнивать не надо, но по хлору необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало пять атома. Составим следующую схему:

до реакции после реакции
Cl 2 Cl 5

Определим наименьшее кратное между данными количествами атомов, это будет «10».

Cl 2 Cl 5
\ 10 /

Разделим это число в левой части уравнения по хлору на «2». Получим число «5», поставим его в решаемое уравнение:

Р + 5Cl 2 → РCl 5

Так же разделим число «10» для правой части уравнения на «5». Получим число «2», так же поставим его в решаемое уравнение:

Р + 5Cl 2 → 2РCl 5

Количества атомов хлора и в левой и в правой частях уравнения стали равны, соответственно по 10 атомов:

Но количество атомов фосфора в обеих частях уравнения не будут соответствовать друг другу:

Следовательно, что бы добиться равенства, необходимо удвоить количество фосфора в левой части уравнения, поставив коэффициент «2»:

Таким образом, равенство по фосфору соблюдено и в целом, уравнение примет вид:

2Р + 5Cl 2 = 2РCl 5 (21)

При составлении уравнений по валентностям необходимо дать определение валентности и установить значения для наиболее известных элементов. Валентность – это одно из ранее применяемых понятий, в настоящее время в ряде школьных программ не используется. Но при его помощи легче объяснить принципы составления уравнений химических реакций. Под валентностью понимают число химических связей, которые тот или иной атом может образовывать с другим, или другими атомами . Валентность не имеет знака (+ или -) и обозначается римскими цифрами, как правило, над символами химических элементов, например:

Откуда берутся эти значения? Как их применять при составлении химических уравнений? Числовые значения валентностей элементов совпадают с их номером группы Периодической системы химических элементов Д. И. Менделеева (Таблица 1).

Для других элементов значения валентностей могут иметь иные значения, но никогда не больше номера группы, в которой они расположены. Причём для чётных номеров групп (IV и VI) валентности элементов принимают только чётные значения, а для нечётных – могут иметь как чётные, так и нечётные значения (Таблица.2).

Конечно же, в значениях валентностей для некоторых элементов имеются исключения, но в каждом конкретном случае эти моменты обычно оговариваются. Теперь рассмотрим общий принцип составления химических уравнений по заданным валентностям для тех или иных элементов. Чаще всего данный метод приемлем в случае составления уравнений химических реакций соединения простых веществ, например, при взаимодействии с кислородом (реакции окисления ). Допустим, необходимо отобразить реакцию окисления алюминия . Но напомним, что металлы обозначаются единичными атомами (Al), а неметаллы, находящиеся в газообразном состоянии – с индексами «2» - (О 2). Сначала напишем общую схему реакции:

Al + О 2 →AlО

На данном этапе ещё не известно, какое правильное написание должно быть у оксида алюминия. И вот именно на данном этапе нам на помощь придёт знание валентностей элементов. Для алюминия и кислорода проставим их над предполагаемой формулой этого оксида:

III II
Al О

После чего «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

III II
Al 2 О 3

Состав химического соединения Al 2 О 3 определён. Дальнейшая схема уравнения реакции примет вид:

Al+ О 2 →Al 2 О 3

Остаётся только уравнять левую и правую его части. Поступим таким же способом, как в случае составления уравнения (19). Количества атомов кислорода уравняем, прибегая к нахождению наименьшего кратного:

до реакции после реакции

О 2 О 3
\ 6 /

Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение. Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

Al + 3О 2 → 2Al 2 О 3

Что бы добиться равенства по алюминию, необходимо скорректировать его количество в левой части уравнения, поставив коэффициент «4»:

4Al + 3О 2 → 2Al 2 О 3

Таким образом, равенство по алюминию и кислороду соблюдено и в целом, уравнение примет окончательный вид:

4Al + 3О 2 = 2Al 2 О 3 (22)

Применяя метод валентностей, можно прогнозировать, какое вещество образуется в процессе химической реакции, как будет выглядеть его формула. Допустим, в реакцию соединения вступили азот и водород с соответствующими валентностями III и I. Напишем общую схему реакции:

N 2 + Н 2 → NН

Для азота и водорода проставим валентности над предполагаемой формулой этого соединения:

Как и прежде «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

III I
N Н 3

Дальнейшая схема уравнения реакции примет вид:

N 2 + Н 2 → NН 3

Уравнивая уже известным способом, через наименьшее кратное для водорода, равное «6»,получим искомые коэффициенты, и уравнение в целом:

N 2 + 3Н 2 = 2NН 3 (23)

При составлении уравнений по степеням окисления реагирующих веществ необходимо напомнить, что степенью окисления того или иного элемента называется число принятых или отданных в процессе химической реакции электронов. Степень окисления в соединениях в основном, численно совпадает со значениями валентностей элемента. Но отличаются знаком. Например, для водорода валентность равна I, а степень окисления (+1) или (-1). Для кислорода валентность равна II, а степень окисления (-2). Для азота валентности равны I,II,III,IV,V, а степени окисления (-3), (+1), (+2), (+3), (+4), (+5) и т.д. Степени окисления наиболее часто применяемых в уравнениях элементов, приведены в таблице 3.

В случае реакций соединения принцип составления уравнений по степеням окисления такой же, как и при составлении по валентностям. Например, приведём уравнение реакции окисления хлора кислородом, в которой хлор образует соединение со степенью окисления +7. Запишем предполагаемое уравнение:

Cl 2 + О 2 → ClО

Поставим над предполагаемым соединением ClО степени окисления соответствующих атомов:

Как и в предыдущих случаях установим, что искомая формула соединения примет вид:

7 -2
Cl 2 О 7

Уравнение реакции примет следующий вид:

Cl 2 + О 2 → Cl 2 О 7

Уравнивая по кислороду, найдя наименьшее кратное между двумя и семи, равное «14», установим в итоге равенство:

2Cl 2 + 7О 2 = 2Cl 2 О 7 (24)

Несколько иной способ необходимо применять со степенями окисления при составлении реакций обмена, нейтрализации, замещения. В ряде случаев предоставляется затруднительным узнать: какие соединения образуются при взаимодействии сложных веществ?

Как узнать: что получится в процессе реакции?

Действительно, как узнать: какие продукты реакции могут возникнут в ходе конкретной реакции? К примеру, что образуется при взаимодействии нитрата бария и сульфата калия?

Ва(NО 3) 2 + К 2 SO 4 → ?

Может быть ВаК 2 (NО 3) 2 + SO 4 ? Или Ва + NО 3 SO 4 + К 2 ? Или ещё что-то? Конечно же, в процессе этой реакции образуются соединения: ВаSO 4 и КNО 3 . А откуда это известно? И как правильно написать формулы веществ? Начнём с того, что чаще всего упускается из вида: с самого понятия «реакция обмена». Это значит, что при данных реакциях вещества меняются друг с другом составными частями. Поскольку реакции обмена в большинстве своём осуществляются межу основаниями, кислотами или солями, то частями, которыми они будут меняться, являются катионы металлов (Na + , Mg 2+ ,Al 3+ ,Ca 2+ ,Cr 3+), ионов Н + или ОН - , анионов – остатков кислот, (Cl - , NO 3 2- ,SO 3 2- , SO 4 2- , CO 3 2- , PO 4 3-). В общем виде реакцию обмена можно привести в следующей записи:

Kt1An1 + Kt2An1 = Kt1An2 + Kt2An1 (25)

Где Kt1 и Kt2 – катионы металлов (1) и (2), а An1 и An2 – соответствующие им анионы (1) и (2). При этом обязательно надо учитывать, что в соединениях до реакции и после реакции на первом месте всегда устанавливаются катионы, а анионы – на втором. Следовательно, если в реакцию вступит хлорид калия и нитрат серебра , оба в растворённом состоянии

KCl + AgNO 3 →

то в процессе её образуются вещества KNO 3 и AgClи соответствующее уравнение примет вид:

KCl + AgNO 3 =KNO 3 + AgCl (26)

При реакциях нейтрализации протоны от кислот (Н +) будут соединяться с анионами гидроксила (ОН -) с образованием воды (Н 2 О):

НCl + КОН = КCl + Н 2 O (27)

Степени окисления катионов металлов и заряды анионов кислотных остатков указаны в таблице растворимости веществ (кислот, солей и оснований в воде). По горизонтали приведены катионы металлов, а по вертикали – анионы кислотных остатков.

Исходя из этого, при составлении уравнения реакции обмена, необходимо вначале в левой его части установить степени окисления принимающих в этом химическом процессе частиц. Например, требуется написать уравнение взаимодействия между хлоридом кальция и карбонатом натрия.Составим исходную схему этой реакции:

СаCl + NаСО 3 →

Са 2+ Cl - + Nа + СО 3 2- →

Совершив уже известное действие «крест»-на-«крест», определим реальные формулы исходных веществ:

СаCl 2 + Nа 2 СО 3 →

Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ:

СаCl 2 + Nа 2 СО 3 → СаСО 3 + NаCl

Над их катионами и анионами проставим соответствующие заряды:

Са 2+ СО 3 2- + Nа + Cl -

Формулы веществ записаны правильно, в соответствии с зарядами катионов и анионов. Составим полное уравнение, уравняв левую и правую его части по натрию и хлору:

СаCl 2 + Nа 2 СО 3 = СаСО 3 + 2NаCl (28)

В качестве другого примера приведём уравнение реакции нейтрализации между гидроксидом бария и ортофосфорной кислотой:

ВаОН + НРО 4 →

Над катионами и анионами проставим соответствующие заряды:

Ва 2+ ОН - + Н + РО 4 3- →

Определим реальные формулы исходных веществ:

Ва(ОН) 2 + Н 3 РО 4 →

Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ, учитывая, что при реакции обмена одним из веществ обязательно должна быть вода:

Ва(ОН) 2 + Н 3 РО 4 → Ва 2+ РО 4 3- + Н 2 O

Определим правильную запись формулы соли, образовавшейся в процессе реакции:

Ва(ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Уравняем левую часть уравнения по барию:

3Ва (ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Поскольку в правой части уравнения остаток ортофосфорной кислоты взят дважды, (РО 4) 2 , то слева необходимо также удвоить её количество:

3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Осталось привести в соответствие количество атомов водорода и кислорода в правой части у воды. Так как слева общее количество атомов водорода равно 12, то справа оно так же должно соответствовать двенадцати, поэтому перед формулой воды необходимо поставить коэффициент «6» (поскольку в молекуле воды уже имеется 2 атома водорода). По кислороду так же соблюдено равенство: слева 14 и справа 14. Итак, уравнение имеет правильную форму записи:

3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + 6Н 2 O (29)

Возможность осуществления химических реакций

Мир состоит из великого множества веществ. Неисчислимо так же количество вариантов химических реакций между ними. Но можем ли мы, написав на бумаге то или иное уравнение утверждать, что ему будет соответствовать химическая реакция? Существует ошибочное мнение, что если правильно расставить коэффициенты в уравнении, то оно будет осуществимо и на практике. Например, если взять раствор серной кислоты и опустить в него цинк , то можно наблюдать процесс выделения водорода:

Zn+ H 2 SO 4 = ZnSO 4 + H 2 (30)

Но если в этот же раствор опустить медь, то процесс выделения газа наблюдаться не будет. Реакция не осуществима.

Cu+ H 2 SO 4 ≠

В случае, если будет взята концентрированная серная кислота, она будет реагировать с медью:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2Н 2 O (31)

В реакции (23) между газами азотом и водородом наблюдается термодинамическое равновесие, т.е. сколько молекул аммиака NН 3 образуется в единицу времени, столько же их и распадётся обратно на азот и водород. Смещение химического равновесия можно добиться повышением давления и понижением температуры

N 2 + 3Н 2 = 2NН 3

Если взять раствор гидроксида калия и прилить к нему раствор сульфата натрия , то никаких изменений наблюдаться не будет, реакция будет не осуществима:

КОН + Na 2 SO 4 ≠

Раствор хлорида натрия при взаимодействии с бромом не будет образовывать бром, несмотря на то, что данная реакция может быть отнесена к реакции замещения:

NаCl + Br 2 ≠

В чём же причины таких несоответствий? Дело в том, что оказывается недостаточно только правильно определять формулы соединений , необходимо знать специфику взаимодействия металлов с кислотами, умело пользоваться таблицей растворимости веществ, знать правила замещения в ряду активности металлов и галогенов. В этой статье излагаются только самые основные принципы как расставить коэффициенты в уравнениях реакций , как написать молекулярные уравнения , как определить состав химического соединения.

Химия, как наука, чрезвычайно разнообразна и многогранна. В приведённой статье отражена лишь малая часть процессов, происходящих в реальном мире. Не рассмотрены типы , термохимические уравнения, электролиз, процессы органического синтеза и многое, многое другое. Но об этом в следующих статьях.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Цель: научить учащихся составлять химические уравнения. Научить их уравнивать с помощью коэффициентов на основе знания закона сохранения массы вещества М.В. Ломоносова.

Задачи:

  • Образовательные :
    • продолжить изучение физических и химических явлений с введением понятия «химическая реакция»,
    • ввести понятие «химическое уравнение»;
    • научить учащихся составлять химические уравнения, уравнивать уравнения с помощью коэффициентов.
  • Развивающие :
    • продолжить развивать творческий потенциал личности учащихся через создание ситуации проблемного обучения, наблюдения, проведения опытов химических реакций.
  • Воспитательная :
    • воспитать умение работать в команде, группе.

Оборудование: табличный материал, справочники, алгоритмы, набор заданий.

Д/О: «Горение бенгальских огней»:, спички, сухое горючее, железный лист/ ТБ при работе с огнём.

ХОД УРОКА

I. Организационный момент

Определение цели урока.

II. Повторение

1) На доске набор физических и химических явлений: испарение воды; фильтрование; ржавление; горение дров; скисание молока; таяние льда; извержение вулкана; растворение сахара в воде.

Задание :

Дать пояснение каждому явлению, назвать практическое применение данного явления в жизни человека.

2) Задание:

На доске нарисована капля воды. Создать полную схему превращения воды из одного агрегатного состояния в другое. Как называется данное явление в природе и каково его значение в жизни нашей планеты и всего живого?

III. Д/О «Горение бенгальских огней»

1. Что происходит с магнием, который составляет основу бенгальского огня?
2. Что явилось основной причиной такого явления?
3. К какому типу относится данная химическая реакция?
4. Попробуйте схематично изобразить химическую реакцию, которую вы наблюдали в этом опыте.

– Предлагаю попробовать составить схему данной реакции:

Mg + воздух = другое вещество

– Как мы узнали, что получилось другое вещество? (По признакам химической реакции: изменение окраски, появление запаха.)
– Какой газ находится в воздухе, который поддерживает горение? (Кислород – О)

IV. Новый материал

Химическую реакцию можно записывать с помощью химического уравнения.
Можно вспомнить понятия «уравнение», которое дается в математике. В чем суть самого уравнения? Что-то уравнивают, какие-то части.
Попробуем дать определение «химического уравнения», можно смотреть на схему и попытаться дать определение:

Химическое уравнение – это условная запись химической реакции с помощь химических знаков, формул и коэффициентов.
Химические уравнения записываются на основе Закона сохранения массы вещества, открытого М.В.Ломоносовым в 1756 году, который гласит (учебник стр. 96): «Масса веществ, вступивших в реакцию, равна массе веществ, получившихся в результате её».
– Надо научиться уравнивать химические уравнения с помощью коэффициентов.
– Для того чтобы хорошо научиться составлять химические уравнения, нам необходимо вспомнить:
– Что такое коэффициент?
– Что такое индекс?
Не забываем алгоритм «Составление химических формул».

Предлагаю пошаговый алгоритм составления химического уравнения:

V. Составления химического уравнения

1. Записываю в левой части уравнение вступающие в реакцию вещества: Al + O 2

2. Ставлю знак «=» и записываю образующиеся вещества в правой части уравнения – продукты реакции: Al + O 2 = Al 2 O 3

3. Уравнивать начинаю с того химического элемента, которого больше или с кислорода, затем составляю конструкцию:

Al + O 2 = Al 2 O 3
2 /6 3

вступило кислорода «2», а получилось «3», их число не равно.

4. Ищу НОК (наименьшее общее кратное) двух цифр «2» и «3» – это «6»

5. Делю НОК «6» на число «2» и «3»и выставляю в качестве коэффициентов перед формулами.

Al + 3O 2 = 2Al 2 O 3
6 = 6

6. Начинаю уравнивать следующие химические элементы – Al, рассуждаю так же. Вступило Al «1», а получилось «4», ищу НОК

Al + 3O 2 = 2Al 2 O 3
1 /4 4
4 = 4
4 Al + 3O 2 = 2Al 2 O 3

Коэффициент «1» в уравнениях не пишется, но учитывается при составлении уравнения.

7. Читаю всю запись химического уравнения.

Такое долгое рассуждение позволяет быстро научиться уравнивать в химических уравнениях, учитывая, что правильное составление уравнений реакций для химии имеет большое значение: решение задач, написание химических реакций.

VI. Задание на закрепление

Фосфор + кислород = оксид фосфора (V)
Серная кислота + алюминий = сульфат алюминия + водород
Вода = водород + кислород

– Работает на доске один сильный ученик.

Zn + O 2 = ZnO­;
H 2 + O 2 = H 2 O;
Ba + O 2 = BaO;
S + O 2 = SO 2 ;
Na + O 2 = Na 2 O 2 ;
Fe + O 2 = Fe 3 O 4

– Расставить коэффициенты в уравнениях химических реакций.

Химические уравнения отличаются по типам, но это мы рассмотрим на следующем уроке.

VII. Подведение итогов урока

Вывод. Выставление оценок.

VIII. Домашнее задание: § 27, упр. 2, с. 100.

Дополнительный материал: Р.т.с. 90-91, упражнение 2 – индивидуально.

Внимательно изучите алгоритмы и запишите в тетрадь, решите самостоятельно предложенные задачи

I. Используя алгоритм, решите самостоятельно следующие задачи:

1. Вычислите количество вещества оксида алюминия, образовавшегося в результате взаимодействия алюминия количеством вещества 0,27 моль с достаточным количеством кислорода (4 Al +3 O 2 =2 Al 2 O 3).

2. Вычислите количество вещества оксида натрия, образовавшегося в результате взаимодействия натрия количеством вещества 2,3 моль с достаточным количеством кислорода (4 Na + O 2 =2 Na 2 O ).

Алгоритм №1

Вычисление количества вещества по известному количеству вещества, участвующего в реакции.

Пример. Вычислите количество вещества кислорода, выделившегося в результате разложения воды количеством вещества 6 моль.

Оформление задачи

1. Записать условие задачи

Дано :

ν(Н 2 О)=6моль

_____________

Найти :

ν(О 2)=?

Решение :

М(О 2)=32г/моль

и расставим коэффициенты

2Н 2 О=2Н 2 +О 2

,

а под формулами –

5. Для вычисления искомого количества вещества,

составим соотношение



6. Записываем ответ

Ответ: ν (О 2)=3моль

II. Используя алгоритм, решитесамостоятельно следующие задачи:

1. Вычислите массу серы, необходимую для получения оксида серы ( S + O 2 = SO 2).

2. Вычислите массу лития, необходимого для получения хлорида лития количеством вещества 0,6 моль (2 Li + Cl 2 =2 LiCl ).

Алгоритм №2

Вычисление массы вещества по известному количеству другого вещества, участвующего в реакции.

Пример: Вычислите массу алюминия, необходимого для получения оксида алюминия количеством вещества 8 моль.

Последовательность выполнения действий

Оформление решения задачи

1. Записать условие задачи

Дано:

ν( Al 2 O 3 )=8моль

___________

Найти:

m ( Al )=?

2. Вычислить молярные массы веществ,

о которых, идёт речь в задаче

M ( Al 2 O 3 )=102г/моль

3. Запишем уравнение реакции

и расставим коэффициенты

4 Al + 3O 2 = 2Al 2 O 3

4. Над формулами веществ запишем

количества веществ из условия задачи ,

а под формулами –

стехиометрические коэффициенты ,

отображаемые уравнением реакции


5. Вычислим количества вещества, массу которого

требуется найти. Для этого составим соотношение.


6. Вычисляем массу вещества, которую требуется найти

m = ν M ,

m (Al )= ν (Al )∙ M (Al )=16моль∙27г/моль=432г

7. Записываем ответ

Ответ: m (Al)= 432 г

III. Используя алгоритм, решитесамостоятельно следующие задачи:

1. Вычислите количество вещества сульфида натрия, если в реакцию с натриемвступает серамассой 12,8 г (2 Na + S = Na 2 S ).

2. Вычислите количество веществаобразующейся меди, если в реакцию с водородом вступает оксид меди ( II ) массой 64 г ( CuO + H 2 = Cu + H 2 O ).

Внимательно изучите алгоритм и запишите в тетрадь

Алгоритм №3

Вычисление количества вещества по известной массе другого вещества, участвующего в реакции.

Пример. Вычислите количество вещества оксида меди (I ), если в реакцию с кислородом вступает медь массой 19,2г.

Последовательность выполнения действий

Оформление задачи

1. Записать условие задачи

Дано:

m ( Cu )=19,2г

___________

Найти:

ν( Cu 2 O )=?

2. Вычислить молярные массы веществ,

о которых, идёт речь в задаче

М(Cu )=64г/моль

3. Найдём количество вещества, масса которого

дана в условии задачи


и расставим коэффициенты

4 Cu + O 2 =2 Cu 2 O

количества веществ из условия задачи ,

а под формулами –

стехиометрические коэффициенты ,

отображаемые уравнением реакции


6. Для вычисления искомого количества вещества,

составим соотношение


7. Запишем ответ

Ответ: ν( Cu 2 O )=0,15 моль

Внимательно изучите алгоритм и запишите в тетрадь

IV. Используя алгоритм, решитесамостоятельно следующие задачи:

1. Вычислите массу кислорода, необходимую для реакции с железом массой 112 г

(3 Fe + 4 O 2 = Fe 3 O 4).

Алгоритм №4

Вычисление массы вещества по известной массе другого вещества, участвующего в реакции

Пример. Вычислите массу кислорода, необходимую для сгорания фосфора, массой 0,31г.

Последовательность выполнения действий

Оформлениезадачи

1. Записать условие задачи

Дано:

m ( P )=0,31г

_________

Найти:

m ( O 2 )=?

2. Вычислить молярные массы веществ,

о которых, идёт речь в задаче

М( P )=31г/моль

M ( O 2 )=32г/моль

3. Найдём количество вещества, масса которого дана в условии задачи

4. Запишем уравнение реакции

и расставим коэффициенты

4 P +5 O 2 = 2 P 2 O 5

5. Над формулами веществ запишем

количества веществ из условия задачи ,

а под формулами –

стехиометрические коэффициенты ,

отображаемые уравнением реакции


6. Вычислим количества вещества, массу которого необходимо найти

m ( O 2 )= ν ( O 2 )∙ M ( O 2 )=

0,0125моль∙32г/моль=0,4г

8. Запишем ответ

Ответ: m ( O 2 )=0,4г

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Вычислите количество вещества оксида алюминия, образовавшегося в результате взаимодействия алюминия количеством вещества 0,27 моль с достаточным количеством кислорода (4 Al +3 O 2 =2 Al 2 O 3).

2. Вычислите количество вещества оксида натрия, образовавшегося в результате взаимодействия натрия количеством вещества 2,3 моль с достаточным количеством кислорода (4 Na + O 2 =2 Na 2 O ).

3. Вычислите массу серы, необходимую для получения оксида серы ( IV ) количеством вещества 4 моль ( S + O 2 = SO 2).

4. Вычислите массу лития, необходимого для получения хлорида лития количеством вещества 0,6 моль (2 Li + Cl 2 =2 LiCl ).

5. Вычислите количество вещества сульфида натрия, если в реакцию с натрием вступает сера массой 12,8 г (2 Na + S = Na 2 S ).

6. Вычислите количество вещества образующейся меди, если в реакцию с водородом вступает оксид меди ( II ) массой 64 г ( CuO + H 2 =
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: помочь обучающимся сформировать знания о химическом уравнении как об условной записи химической реакции с помощью химических формул.

Задачи:

Образовательные:

  • систематизировать ранее изученный материал;
  • обучать умению составлять уравнения химических реакций.

Воспитательные:

  • воспитывать коммуникативные навыки (работа в паре, умение слушать и слышать).

Развивающие:

  • развивать учебно-организационные умения, направленные на выполнение поставленной задачи;
  • развивать аналитические навыки мышления.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, оценочные листы, карта рефлексии, “набор химических знаков”, тетрадь с печатной основой, реактивы: гидроксид натрия, хлорид железа(III), спиртовка, держатель, спички, лист ватмана, разноцветные химические знаки.

Презентация урока (приложение 3)

Структура урока.

І. Организационный момент.
ІІ. Актуализация знаний и умений.
ІІІ. Мотивация и целеполагание.
ІV. Изучение нового материала:
4.1 реакция горения алюминия в кислороде;
4.2 реакция разложения гидроксида железа (III);
4.3 алгоритм расстановки коэффициентов;
4.4 минута релаксации;
4.5 расставь коэффициенты;
V. Закрепление полученных знаний.
VІ. Подведение итогов урока и выставление оценок.
VІІ. Домашнее задание.
VІІІ. Заключительное слово учителя.

Ход урока

Химическая натура сложной частицы
определяется натурой элементарных
составных частей,
количеством их и
химическим строением.
Д.И.Менделеев

Учитель. Здравствуйте, ребята. Садитесь.
Обратите внимание: у вас на столе лежит тетрадь с печатной основой (Приложение 2), в которой вы сегодня будете работать, и оценочный лист, в нем вы будете фиксировать свои достижения, подпишите его.

Актуализация знаний и умений.

Учитель. Мы с вами познакомились с физическими и химическими явлениями, химическими реакциями и признаками их протекания. Изучили закон сохранения массы веществ.
Давайте проверим ваши знания. Я предлагаю вам открыть тетради с печатной основой и выполнить задание 1. На выполнение задания вам дается 5 минут.

Тест по теме “Физические и химические явления. Закон сохранения массы веществ”.

1.Чем химические реакции отличаются от физических явлений?

  1. Изменение формы, агрегатного состояния вещества.
  2. Образование новых веществ.
  3. Изменение местоположения.

2. Каковы признаки химической реакции?

  1. Образование осадка, изменение цвета, выделение газа.
  • Намагничивание, испарение, колебание.
  • Рост и развитие, движение, размножение.
  • 3. В соответствии с каким законом составляются уравнения химических реакций?

    1. Закон постоянства состава вещества.
    2. Закон сохранения массы вещества.
    3. Периодический закон.
    4. Закон динамики.
    5. Закон всемирного тяготения.

    4. Закон сохранения массы вещества открыл:

    1. Д.И. Менделеев.
    2. Ч. Дарвин.
    3. М.В. Ломоносов.
    4. И. Ньютон.
    5. А.И. Бутлеров.

    5. Химическим уравнением называют:

    1. Условную запись химической реакции.
  • Условную запись состава вещества.
  • Запись условия химической задачи.
  • Учитель. Вы выполнили работу. Я предлагаю вам осуществить ее проверку. Поменяйтесь тетрадями и осуществите взаимопроверку. Внимание на экран. За каждый правильный ответ – 1 балл. Общее количество баллов занесите в оценочные листы.

    Мотивация и целеполагание.

    Учитель. Используя эти знания, мы сегодня будем составлять уравнения химических реакций, раскрывая проблему “Является ли закон сохранения массы веществ основой для составления уравнений химических реакций”

    Изучение нового материала.

    Учитель. Мы привыкли считать, что уравнение-это математический пример, где есть неизвестное, и это неизвестное нужно вычислить. А вот в химических уравнениях обычно ничего неизвестного не бывает: в них просто записывается все формулами: какие вещества вступают в реакцию и какие получаются в ходе этой реакции. Посмотрим опыт.

    (Реакция соединения серы и железа.) Приложение 3

    Учитель. С точки зрения массы веществ, уравнение реакции соединения железа и серы понимается следующим образом

    Железо + сера → сульфид железа (II) (задание 2 тпо)

    Но в химии слова отражаются химическими знаками. Запишите это уравнение химическими символами.

    Fe + S → FeS

    (Один ученик пишет на доске, остальные в ТПО.)

    Учитель. Теперь прочитайте.
    Обучающиеся. Молекула железа взаимодействует с молекулой серы, получается одна молекула сульфида железа (II).
    Учитель. В данной реакции мы видим, что количество исходных веществ равно количеству веществ в продукте реакции.
    Всегда надо помнить, что при составлении уравнений реакций ни один атом не должен потеряться или неожиданно появиться. Поэтому иногда, записав все формулы в уравнении реакции, приходиться уравнивать число атомов в каждой части уравнения – расставлять коэффициенты. Посмотрим еще один опыт

    (Горение алюминия в кислороде.) Приложение 4

    Учитель. Запишем уравнение химической реакции (задание 3 в ТПО)

    Al + O 2 → Al +3 O -2

    Чтобы записать правильно формулу оксида, вспомним что

    Обучающиеся. Кислород в оксидах имеет степень окисления -2, алюминий – химический элемент с постоянной степенью окисления +3. НОК = 6

    Al + O 2 → Al 2 O 3

    Учитель. Мы видим, что в реакцию вступает 1 атом алюминия, образуется два атома алюминия. Вступает два атома кислорода, образуется три атома кислорода.
    Просто и красиво, но неуважительно по отношению к закону сохранения массы веществ – она разная до и после реакции.
    Поэтому нам необходимо расставить коэффициенты в данном уравнении химической реакции. Для этого найдем НОК для кислорода.

    Обучающиеся. НОК = 6

    Учитель. Перед формулами кислорода и оксида алюминия ставим коэффициенты, чтобы число атомов кислорода слева и справа было равно 6.

    Al + 3 O 2 → 2 Al 2 O 3

    Учитель. Теперь получаем, что в результате реакции образуется четыре атома алюминия. Следовательно, перед атомом алюминия в левой части ставим коэффициент 4

    Al + 3O 2 → 2Al 2 O 3

    Еще раз пересчитаем все атомы до реакции и после нее. Ставим равно.

    4Al + 3O 2 _ = 2 Al 2 O 3

    Учитель. Рассмотрим еще один пример

    (Учитель демонстрирует опыт по разложению гидроксида железа (III).)

    Fe(OH) 3 → Fe 2 O 3 + H 2 O

    Учитель. Расставим коэффициенты. В реакцию вступает 1 атом железа, образуется два атома железа. Следовательно, перед формулой гидроксида железа (3) ставим коэффициент 2.

    Fe(OH) 3 → Fe 2 O 3 + H 2 O

    Учитель. Получаем, что в реакцию вступает 6 атомов водорода (2х3), образуется 2 атома водорода.

    Обучающиеся. НОК =6. 6/2 = 3. Следовательно, у формулы воды ставим коэффициент 3

    2Fe(OH) 3 → Fe 2 O 3 + 3 H 2 O

    Учитель. Считаем кислород.

    Обучающиеся. Слева – 2х3 =6; справа – 3+3 = 6

    Обучающиеся. Количество атомов кислорода,вступивших в реакцию, равно количеству атомов кислорода, образовавшихся в ходе реакции. Можно ставить равно.

    2Fe(OH) 3 = Fe 2 O 3 +3 H 2 O

    Учитель. Теперь давайте обобщим все сказанное ранее и познакомимся с алгоритмом расстановки коэффициентов в уравнениях химических реакций.

    1. Подсчитать количество атомов каждого элемента в правой и левой части уравнения химической реакции.
    2. Определить, у какого элемента количество атомов меняется, найти НОК.
    3. Разделить НОК на индексы – получить коэффициенты. Поставить их перед формулами.
    4. Пересчитать количество атомов, при необходимости действие повторить.
    5. Последним проверить количество атомов кислорода.

    Учитель. Вы хорошо потрудились и, наверное, устали. Я предлагаю вам расслабиться, закрыть глаза и вспомнить какие-либо приятные моменты жизни. У каждого из вас они разные. Теперь откройте глаза и сделайте круговые движения ими сначала по часовой стрелке, затем – против. Теперь интенсивно подвигайте глазами по горизонтали: направо – налево, и вертикали: вверх – вниз.
    А сейчас активизируем мыслительную деятельность и помассируем мочки ушей.

    Учитель. Продолжаем работу.
    В тетрадях с печатной основой выполним задание 5. Работать вы будете в парах. Вам необходимо расставить коэффициенты в уравнених химических реакций. На выполнение задания дается 10 минут.

    • P + Cl 2 →PCl 5
    • Na + S → Na 2 S
    • HCl + Mg →MgCl 2 + H 2
    • N 2 + H 2 →NH 3
    • H 2 O → H 2 + O 2

    Учитель. Проверим выполнение задания (учитель опрашивает и выводит на слайд правильные ответы) . За каждый правильно поставленный коэффициент – 1 балл.
    С заданием вы справились. Молодцы!

    Учитель. Теперь давайте вернемся к нашей проблемы.
    Ребята, как вы считаете, является ли закон сохранения массы веществ основой для составления уравнений химических реакций.

    Обучающиеся. Да, в ходе урока мы доказали, что закон сохранения массы веществ – основа для составления уравнений химических реакций.

    Закрепление знаний.

    Учитель. Все основные вопросы мы изучили. Теперь выполним небольшой тест, который позволит увидеть, как вы освоили тему. Вы должны на него отвечать только “да” или “нет”. На работу дается 3 минуты.

    Утверждения.

    1. В реакции Ca + Cl 2 → CaCl 2 коэффициенты не нужны. (Да)
    2. В реакции Zn + HCl → ZnCl 2 + H 2 коэффициент у цинка 2. (Нет)
    3. В реакции Ca + O 2 → CaO коэффициент у оксида кальция 2. (Да)
    4. В реакции CH 4 → C + H 2 коэффициенты не нужны. (Нет)
    5. В реакции CuO + H 2 → Cu + H 2 O коэффициент у меди 2. (Нет)
    6. В реакции C + O 2 → CO коэффициент 2 надо поставить и у оксида углерода (II) , и у углерода. (Да)
    7. В реакции CuCl 2 + Fe → Cu + FeCl 2 коэффициенты не нужны. (Да)

    Учитель. Проверим выполнение работы. За каждый правильный ответ – 1 балл.

    Итог урока.

    Учитель. Вы справились хорошо с заданием. Сейчас подсчитайте общее количество набранных баллов за урок и поставьте себе оценку согласно рейтингу, который вы видите на экране. Сдайте мне оценочные листы для выставления вашей оценки в журнал.

    Домашнее задание.

    Учитель. Наш урок подошел к концу, в ходе которого мы смогли доказать, что закон сохранения массы веществ является основой для составления уравнений реакций, и научились составлять уравнения химических реакций. И, как финальная точка, запишите домашнее задание

    § 27, упр. 1 – для тех, кто получил оценку “3”
    упр. 2– для тех, кто получил оценку “4”
    упр. 3 – для тех, кто получил оценку
    “5”

    Заключительное слово учителя.

    Учитель. Я благодарю вас за урок. Но прежде чем вы покинете кабинет, обратите внимание на таблицу (учитель показывает на лист ватмана с изображением таблицы и разноцветными химическими знаками). Вы видите химические знаки разного цвета. Каждый цвет символизирует ваше настроение.. Я предлагаю вам составить свою таблицу химических элементов (она будет отличаться от ПСХЭ Д.И.Менделеева) – таблицу настроения урока. Для этого вы должны подойти к нотному листу, взять один химический элемент, согласно той характеристике, которую вы видите на экране, и прикрепить в ячейку таблицы. Я сделаю это первой, показав вам свою комфортность от работы с вами.

    F Мне было на уроке комфортно, я получил ответ на все интересующие меня вопросы.

    F На уроке я достиг цели наполовину.
    F Мне на уроке было скучно, я ничего не узнал нового .

    Решение уравнений химический реакций вызывают затруднения у немалого количества учеников средней школы во-многом благодаря большому разнообразию участвующих в них элементов и неоднозначности их взаимодействия. Но так как основная часть курса общей химии в школе рассматривает именно взаимодействие веществ на основе их уравнений реакций, то ученикам необходимо обязательно ликвидировать пробелы в данной области и научиться решать химические уравнения, чтобы избежать проблем с предметом в дальнейшем.

    Уравнением химической реакции называется символьная запись, отображающая взаимодействующие химические элементы, их количественное соотношение и получающиеся в результате взаимодействия вещества. Данные уравнения отражают сущность взаимодействия веществ с точки зрения атомно-молекулярного или электронного взаимодействия.

    1. В самом начале школьного курса химии учат решать уравнения на основе понятия валентности элементов периодической таблицы. На основе данного упрощения рассмотрим решение химического уравнения на примере окисления алюминия кислородом. Алюминий, взаимодействуя с кислородом, образует оксид алюминия. Обладая указанными исходными данными составим схему уравнения.

      Al + O 2 → AlO


      В данном случае мы записали примерную схему химической реакции, которая лишь частично отражает ее сущность. В левой части схемы записываются вещества, вступающую в реакцию, а в правой результат их взаимодействия. Кроме того, кислород и другие типичные окислители, обычно записываются правее металлов и других восстановителей в обоих частях уравнения. Стрелка показывает направление реакции.

    2. Чтобы данная составленная схема реакции приобрела законченный вид и соответствовала закону сохранения массы веществ, необходимо:
      • Проставить индексы в правой части уравнения у вещества, получившегося в результате взаимодействия.
      • Уровнять количество участвующих в реакции элементов с количеством получившегося вещества в соответствии с законом сохранения массы веществ.
    3. Начнем с приостановки индексов в химической формуле готового вещества. Индексы устанавливаются в соответствии с валентностью химических элементов. Валентностью называют способность атомов образовывать соединения с другими атомами за счет соединения их неспаренных электронов, когда одни атомы отдают свои электроны, а другие присоединяют их себе на внешний энергетический уровень. Принято считать, что валентность химического элемента определяет его группой (колонкой) в периодической таблице Менделеева. Однако на практике взаимодействие химических элементов происходит гораздо сложнее и разнообразнее. Например, атом кислорода во всех реакциях имеет валентность Ⅱ, несмотря на то, что в периодической таблице находится в шестой группе.
    4. Чтобы помочь вам сориентироваться в этом многообразии, предлагаем вам следующий небольшой справочный помощник, который поможет определить валентность химического элемента. Выберите интересующий вас элемент и вы увидите возможные значения его валентности. В скобках указаны редкие для выбранного элемента валентности.
    5. Вернемся к нашему примеру. Запишем в правой части схемы реакции сверху над каждым элементом его валентность.

      Для алюминия Al валентность будет равна Ⅲ, а для молекулы кислорода O 2 валентность равна Ⅱ. Находим наименьшее общее кратное к этим числам. Оно будет равно шести. Делим наименьшее общее кратное на валентность каждого элемента и получаем индексы. Для алюминия шесть делим на валентность получаем индекс 2, для кислорода 6/2=3. Химическая формула оксида алюминия, полученного в результате реакции, примет вид Al 2 O 3 .

      Al + O 2 → Al 2 O 3

    6. После получения правильной формулы готового вещества необходимо проверить и в большинстве случаев уравнять правые и левые части схемы согласно закона сохранения массы, так как продукты реакции образуются из тех же атомов, которые изначально входили в состав исходных веществ, участвующих в реакции.
    7. Закон сохранения массы гласит, что количество атомов вступивших в реакцию должно равняться количеству атомов получившихся в результате взаимодействия. В нашей схеме во взаимодействии участвуют один атом алюминия и два атома кислорода. В результате реакции получаем два атома алюминия и три кислорода. Очевидно, что схему необходимо уровнять, используя коэффициенты для элементов и вещества, чтобы соблюдался закон сохранения массы.
    8. Уравнивание выполняют также через нахождение наименьшего общего кратного, которое находится между элементами, обладающими наибольшими индексами. В нашем примере это будет кислород с индексом в правой части равным 3 и в левой части равным 2. Наименьшее общее кратное и в этом случае будет равно 6. Теперь разделим наименьшее общее кратное на значение наибольшего индекса в левой и правой частях уравнения и получим следующие индексы для кислорода.

      Al + 3∙O 2 → 2∙Al 2 O 3

    9. Теперь остается уравнять только алюминий в правой части. Для этого в левую часть поставим коэффициент 4.

      4∙Al + 3∙O 2 = 2∙Al 2 O 3

    10. После расстановки коэффициентов уравнение химической реакции соответствует закону сохранения массы и между его левой и правой частями можно поставить знак равенства. Расставленные коэффициенты в уравнении обозначают число молекул веществ, участвующих в реакции и получающихся в результате нее, или соотношение данных веществ в молях.
    После выработки навыков решения химических уравнений на основе валентностей взаимодействующих элементов, школьный курс химии знакомит с понятием степени окисления и теорией окислительно-восстановительных реакций. Данный тип реакций является наиболее распространенным и в дальнейшем химические уравнения чаще всего решают на основе степеней окисления взаимодействующих веществ. О том, рассказано в соответствующей статье на нашем сайте.